7.1 nth Roots and Rational Exponents

n th Root Vocabulary:						
• <i>b</i> is the square root of <i>b</i>	a if $b^2 = a$					
 Example: 	is the square root of	if				
 Writte 	n as:	-				
• <i>b</i> is the cube root of <i>a</i> i	f $b^3 = a$					
 Example: 	is the cube root of	_ if				
 Writte 	n as:	-				
• <i>b</i> is the fourth root of <i>a</i>	a if $b^4 = a$					
 Example: 	is the fourth root of	if				
 Writte 	n as:	-				
• <i>b</i> is the fifth root of <i>a</i> if	$b^{5} = a$					
 Example: 	is the fifth root of	_ if				
 Writte 	n as:	_				
 In general, b is the nth r The nth root of 	Foot of a if $b^n = a$ a number a can be w	ritten as	, where <i>n</i> is the index/root	t.		
<u>Examples</u> : Simplify.						
1) $\sqrt{16} =$	2) $\sqrt{-196} =$	3) $\sqrt{60} =$	 √-288 = 	=		
5) $\sqrt[3]{125} =$	6) $\sqrt[3]{-1000} =$	7) $\sqrt[3]{216} =$	8) $\sqrt[3]{-8} =$			
9) ∜81 =	10) ⁴ √625 =	11) ∜1 =	12) $\sqrt[4]{-1} =$			
If the index/root is: <u>even</u> & <u>radicand is negative</u> , there is						
	odd & radical is negat	ive, the solution follows t	he of the			
No matter what the index/root is, if the radicand is POSITIVE, there is ALWAYS a solution!!!						

Find the indicated root(s) of *a*.

13) n = 3, a = -64 14) n = 4, a = 16 15) n = 2, a = 81 16) n = 3, a = 343 17) n = 4, a = -1296

Instead of using a radical to write an nth root, you can use a fractional exponent.

Examples:

18)
$$9^{\frac{1}{2}} =$$
 19) $16^{\frac{1}{4}} =$ 20) $64^{\frac{1}{3}} =$ 21) $(-32)^{\frac{1}{4}} =$ 22) $(-8)^{\frac{1}{3}} =$

Practice:

1	1	1	1	1
23) $25^{\overline{2}} =$	24) $(-81)^{\overline{4}} =$	25) 125 3 =	26) $(-81)^{\overline{2}} =$	27) $(-8)^{\overline{3}} =$

Rational Exponents / Fractional Exponents:

• You can use a fraction as an exponent to write a combination of a power and an nth root.

